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ML in Security

1. ML algorithms used in security tasks: common case
– Spam detection, credit card fraud detection, …

2. Security of ML algorithms themselves: more recent but 
intense activity

– Categorization based on temporal characteristic of attack or 
attacker knowledge

– Categorization 1: Training time[1,2] versus test time[3]

– Categorization 2: Model knowledge by attacker

Bibliography at the end of the slide deck
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Some Types of ML Attacks
• Evasion attacks

• Poisoning attacks

• AML in Deep Neural Networks
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Evasion Attacks
• Adversary who previously chose instance x (which is 

now classified as malicious) now chooses another 
instance x’ which is classified as benign

cheap =  1.0
mortgage =  1.5

Total score =  2.5

From: spammer@example.com
Cheap mortgage now!!!  

Feature Weights

> 1.0 (threshold)

1.

2.

3.

Spam
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Evasion Attacks

cheap =  1.0
mortgage =  1.5

Total score =  0.5

From: spammer@example.com
Cheap mortgage now!!!
Mt. Hood Oregon

< 1.0 (threshold)

1.

2.

3.

OK

Feature Weights

Mt. Hood = -1.0
Oregon = -1.0
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Modeling Evasion Attacks
• Attacker has an “ideal” feature vector xideal

– These are the original malicious feature vectors in training data

• Modifying x into another feature vector x¢ incurs a cost 
C(xideal, x¢)

• The attacker’s goal is to appear “benign” to the classifier
• Observation: Feature space modeling

– Attacker can make arbitrary changes to features
– Cost is meant to capture constraints faced by the attacker

Slide from Yevgeniy Vorobeychik, AAAI 2018
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Attacker Knowledge
• Black-box attacks: Attacks that fool a target model by 

adversarial examples made on a substitute model.
– Adversaries do not know internal parameters of target model
– However, using the same training data set, they can train their 

own DNN model; Can construct gradients of the target model 
with high similarity

• White-box attacks: Attacks that attempt to mislead the 
target model using the adversarial examples crafted on 
the target model itself
– Adversaries are assumed to have access to the target model
– Can compute the gradients of the target.
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Adversarial Examples

NN prediction: 
Panda (70%) 

NN prediction: 
Gibbon (99%) 

Training: X ® q Inference: qx ® y Inference under 
attack: qx¢ ® y′
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Adversarial Examples in the Physical World

• AE Transferability: It was shown in [Goodfellow-
NIPS14] that AEs crafted to mislead a DNN often also 
mislead a substitute model of the DNN
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Some Ideas for Defense
1. Adversarial training: Proactively generating adversarial 

examples as part of the training procedure
– Activity in efficiently generating lots of adversarial examples by perturbing 

actual data points
– Model is then trained to assign the same label to the adversarial example as 

to the original example

2. Defensive distillation: Smooths the model’s decision surface in 
adversarial directions exploited by the adversary

– Distillation is a training method where one model is trained to predict 
probabilities output by another model that was trained earlier

– First model is trained with “hard” labels (100% probability that an image is 
a dog rather than a cat) and then provides “soft” labels (95% probability that 
an image is a dog rather than a cat) used to train the second model

– The second “distilled” model is more robust to attacks
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Latest Defense against Adversarial Examples
• Feature Squeezing: [Xu-Evans-Qi-NDSS18]
• Detect AEs rather than making model robust to AEs

Legitimate
Feature Squeezer does quantization of the image.
• Barely change legitimate input.
• Destruct adversarial perturbations
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But the Arms Race Goes On
• Feature Squeezing’s decision threshold needs to be fixed 

targeting a particular perturbation level
– It performs poorly for perturbation levels that the threshold is 

not targeted for

Detection Rate (DR) = b+c
False Positive Rate (FPR) 

= a+b
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One Possible Solution
• Fundamentally, the drawback of FS is that there is a rigid mapping 

of perturbation level used to generate AE and L1 norm threshold 
• We show that using a richer detector can lead to more precise 

detection across a wide range of perturbation levels
• For a given image x, we consider a quantized image xq, which is 

made by quantizing each pixel of x with step size s

Quantize each pixel of 
image by step size s

Difference of two logits
vector. Size = K, # classes

Simple fully connected NN



14

Preliminary Evaluation

• HAWKEYE achieves a much lower ASR-AD than FS
• Even though DR at low perturbation level is not high, but it is not a 

big issue in terms of ASR-AD

Detection Rate (higher is 
better)

Percentage that fool DNN and our 
detector (lower is better)



15

Open Research Problems
• How is performance to “natural faults”

– Examples: Brightness-reduced images (simulating images taken at night 
time), occlusion by a noise box (simulating an attacker or a water drop 
potentially blocking some parts of a camera), and occlusion by multiple tiny 
black dots (simulating dirt on camera lens)

• How can this class of techniques be used together with gradient-
masking defenses that have been discredited in general, but often 
work well for low perturbation level attacks?

• Fundamentally, it is hard to defend against Adversarial Examples
because it is hard to construct a theoretical model of the AE 
crafting process
– AEs are solutions to an optimization problem that is non-linear and non-

convex for many ML models
– Because we don’t have good theoretical tools for describing the solutions to 

these complicated optimization problems, it is very hard to make any kind of 
theoretical argument that a defense will rule out a set of AEs
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Game Theoretic View of Adversarial ML

Slide from Ian Goodfellow, 2018

Defender: Minimize the 
maximum damage that can be 

inflicted by an adversary
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Real-world Problem Context
• Modern critical infrastructures have a large number of assets, 

managed by multiple stakeholders. 
• The security of these complex systems depends critically on the 

interdependencies between these assets. 

Goal: Create optimal and strategic allocation of defense resources in 
interdependent large-scale networks. 

Tools: Machine Learning and Game Theory
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Our Research Direction
• Game-theoretic framework involving attack graph models of 

large-scale interdependent systems and multiple defenders
• Each human defender misperceives the probabilities of successful 

attack in the attack graph
• We characterize impacts of such misperceptions on the security 

investments made by each defender
A
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Behavioral Weighting Function
• Human perceptions of rewards and losses can differ substantially 

from their true values
• These perceptions can have a significant impact on the investments 

made to protect the systems that the individuals are managing. 

• Humans overweight low attack 
probabilities and underweight 
large attack probabilities.

• Example: Prelec [1998] 
weighting function:

• 𝑤 𝑥 = exp − − ln(𝑥) α

• where parameter α ∈ 0,1 .
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What’s Nobel Got to Do With It?

Daniel Kahneman (2002 Economics Nobel Laureate): 
Prospect theory as a model of decision making under 

risk, as a counterpoint to expected utility theory

Richard Thaler (2017 Economics Nobel Laureate): “I 
discovered the presence of human life in a place not far, far 
away, where my fellow economists thought it did not exist: 

the economy.”
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Some Definitions
• Behavioral defender (colloquially “biased defender”): Makes 

security investment decisions under cognitive biases
– Using prospect-theoretic, non-linear probability weighting models, they 

misperceive probabilities of a successful attack on edges of the attack graph

• Non-behavioral (colloquially “rational defender”): Makes security 
investment decisions based on the classical models of fully rational 
decision making
– Correctly perceives the risk on each edge within the attack graph of the CPS 

network, and chooses investments accordingly

• Why do we need to consider human cognitive biases in security 
decision making?
– Significant investments in security controls, security policies, or changes in 

the system architecture involve human decision making
– One player may have partial observability of other player’s actions
– Deception may be used to create mis-perception of attack-defense successes
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Optimization Problem Formulation
• The probability of successfully compromising vj, starting from vi, 

is given by

• A behavioral defender Dk chooses her investments xi,j
k to minimize 

her perceived loss

• The probability weighting function w(p) gives how humans mis-
perceive true probability p
– For example: a commonly believed functional form is the Prelec form where 

aÎ (0, 1] determines the degree of mis-perception
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Break for Games

http://ifipdemo.herokuapp.com/

Network Red
Network Blue

Follow: “Session-wide link
Open the below link in up to 1 browser tabs” 
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Intuition for Behavioral vs. Non-behavioral Decisions

• Theorem: One can prove (using the KKT conditions of non-linear 
programming) that it is optimal for a non-behavioral defender to put all of her 
budget only on the min-cut edges, i.e., any solution satisfying xs,1 + x4,5 = B

– Optimal investment leads to a loss of e-B

• For the behavioral defender total loss function is: 

• Min-cut of a graph: Given two assets s and t in 
the graph, an edge-cut is a set of edges Ec such 
that removing them from the graph removes all
paths from s to t; A min-cut is an edge-cut of 
smallest cardinality over all possible edge-cuts

• Two possible min-cuts: (vs , v1), (v4, v5)
• Total loss function for the defender Single defender; 

Single target asset
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Intuition for Behavioral vs. Non-behavioral Decisions

• Loss for behavioral defender > Loss for non-
behavioral defender

• Why this behavior?
– When considering an undefended edge, the marginal 

reduction of attack probability on that edge as perceived 
by a behavioral defender is much larger than the 
marginal reduction of true attack probability

– Thus the behavioral defender is incentivized to invest 
some non-zero amount on that edge

• Optimal investment by behavioral defender: 

• There are investments on non-min-cut edges Single defender; 
Single target asset
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Other Modeling Factors
• Multi-hop dependence

– The ease of an attacker in achieving an attack goal depends not just on the 
immediate prior attack step but on steps farther back

– Solution approach: Split one path into multiple taking into account different 
dependent paths

• Spreading behavior of security investments
– Behavioral defender spreads her defensive investments on all edges 

throughout the attack graph
– Solution approach: For each defender Dk, we set xi,j

k ³ hk

• Misperception due to information asymmetry or deception
– Hypergames extend the classical game theory model by incorporating the 

perception of each player in the game analysis
– Solution approach: We show hypergames is a valuable game-theoretic model to 

analyze how to use deception to increase security of inter-dependent systems
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Initial Observations
• Both games (vertex based and path based) have Convex cost 

function given a convex decreasing probability function
• Both games have a Pure Nash Equilibrium (PNE) state
• In each game, we can compute the best response by solving a 

convex optimization problem 
• They have different investment decisions than standard security 

game which maximizes expected utility
• A rational player can benefit from a biased player

2
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Sample System Applications
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Insights about Behavioral Decision Making
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Human Subject Experiments

• Fully rational players tend to invest in min-cut edges
• Behavioral players also invest in non critical edges and have a spreading 

behavior

Critical Edge
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Take Aways and Open Challenges
• Adversarial ML algorithms need to be considered

– To defend against malicious tampering of the model or the data 
– To protect against natural failures for high reliability scenarios: Autonomous 

vehicles, Air traffic control, Surgery robots, …
• Game theory can be applied to understand the effects of misperceptions, whether 

natural or maliciously induced
– For inter-dependent systems, possibly with multiple defenders
– Extensions to classical models needed 
– Behavioral game theory for handling misperceptions
– Hypergame theory for handling different degrees of misinformation among players

• Open Challenges
1. Laws of secure ML algorithms? Even under highly specific conditions
2. Game theory being used to analyze dynamic scenarios. Respond in real-time.
3. Induce beneficial misperception to lead to secure deployments. 
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